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The size effect in low-load hardness testing is analyzed theoretically using an
energy-balance approach. A new semi-empirical equation is proposed to correlate the
hardness test load and the resulting indentation size. The validity of this new equation is
verified by analyzing the previously reported experimental data. It is found that the value of
true hardness of material estimated with this new equation is independent of the indentor
geometry as well as indentation size. C© 2000 Kluwer Academic Publishers

1. Introduction
Resistance to permanent deformation, especially de-
formation by indentation, is usually described with in-
dentation hardness,H , which is traditionally defined
as the ratio of the applied load,P (N), to the resulting
indentation area,A (mm2), i.e.:

H = P

A
= κP

d2
(1)

whered is the measured length of indentation diagonal
andκ is a constant equal to 1.8544 for Vickers hardness
testing and to 14.229 for Knoop hardness testing.

The indentor gives geometrically similar indenta-
tions, so that it follows that the measured hardness must
be independent of the applied load. However, it is ex-
perimentally well established that, more frequently, the
apparent hardness measured in a low load range in-
creases with decreasing load [1–5], and this effect is
known as the indentation size effect (ISE). The exis-
tence of ISE implies that, if hardness is used as a mate-
rial selection criterion, it is clearly insufficient to quote
a single hardness number.

The origin of the ISE is still a controversial sub-
ject. Several possible explanations have been proposed.
The most common explanations found in the literature
are experimental errors related to the smallness of the
indentation [6–8]. The second set of explanations are
related to the intrinsic structural factors of the test ma-
terials [9–11]. Detailed reviews of the research efforts
on the ISE can be found elsewhere [12–14].

The ISE has been traditionally described through the
application of the Meyer’s law [15], in which the ap-
plied load,P, and the resulting indentation size,d, is
correlated as:

P = Adn (2)

whereA andn are descriptive parameters derived from
the curve fitting of the experimental results. The Meyer
∗ Author to whom all correspondence should be addressed.

exponentn has been experimentally observed to be be-
tween 1 and 2 [4]. Although Meyer’s law has been well-
proved suitable for representing the experimental data,
an explanation of the physical meaning of this relation-
ship has not been satisfactorily achieved.

Frohlich et al. [16] have proposed another empiri-
cal equation to correlate the indentation load and the
resulting indentation size:

P =
∑

i

ai d
i (3)

wherei is a series of integers. By limiting the number
of terms and assuminga0 is zero forP= 0, one gets:

P = a1d + a2d2 (4)

Equation 4 is of the same form as has been applied by
Bernhardt [17] when studying the ISE for several ma-
terials. Basing on the consideration of energy-balance,
Bernhardt [17] suggested that the first term of the right
side of Equation 4 represent the surface energy con-
tribution while the second term represent the volume
energy contribution. According to Equation 4, the total
load, P, is now separated into two parts, and only the
second term of the right side of Equation 4 is related
to the permanent deformation by indentation. Thus a
load-independent hardness, sometimes referred to as
the true hardness,HT, can be defined as [18–20]:

HT = (P − a1d)

A
= κ

(
a2d2

d2

)
= κa2 (5)

The experimental basis of the energy-balance expla-
nations for Equation 4 is the fact that, when the exper-
imental results are represented on aP/d ∼ d plot, a
straight line is always obtained [2, 5, 18–20]. However,
recent works by the present authors [21, 22] have shown
that the linear relationship betweenP/d andd may only
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be held in a narrower range of applied loads. When a
relatively wider range of applied loads is considered, or
when a more accurate data-treatment process is used,
Equation 4 is found to be insufficient. A modification
of Equation 4 is also proposed in our recent works, i.e.
[21, 22]:

P = c0+ c1d + c2d2 (6)

wherec0, c1, andc2 are constants.
The objective of the present work is to reexamine

the size effect in low-load hardness testing based on
an energy-balance consideration and thence to give
some theoretical foundation to Equation 6, the empiri-
cal equation proposed previously.

2. Theoretical consideration
Equation 1 may be transformed as:

Pd = Hd3

κ
= βHd3 (7)

Note that the indentation size,d, is directly proportional
to the indentation depth,h, if the experimental errors
related to the smallness of the indentation are neglected.
One can consider the left side of Equation 7 as a measure
of the work done by the applied load during indentation
and the right side as a measure of the energy used to
produce the permanent deformation. Therefore, Equa-
tion 7 is an energy-balance equation essentially, i.e.,
the indentation hardness is defined originally based on
an energy-balance consideration. Exactly, hardness is a
parameter with a dimension of J/m3, rather than N/m2 or
GPa, which is a measure of the energy needed for pro-
ducing the permanent deformation of an unit volume.

In continuation to this idea, it is clear from Equation 7
that a constant value of hardness may be expected if the
total work done by the applied load is transformed to
energy for the permanent deformation without any extra
dissipation. Unfortunately, the extra energy-dissipation
is always inevitable during indentation, for a part of the
work done by the applied load must be transformed to
the energy for the increase of the surface area of spec-
imen due to indentation. The extra energy-dissipation
may also result from a variety of phenomena, includ-
ing the formation and propagation of microcracks, the
formation of pile-ups near the indentation, the migra-
tion of the grain boundaries, the deformation of the
intrinsic pores, etc. To a first approximation, the energy
dissipated for all of these phenomena may be consid-
ered to be area-related and directly proportional tod2.
Thus, Equation 7 should be revised as:

Pd = αd2+ βHTd3 (8)

whereα is a constant dependent on the surface en-
ergy of test material andHT is the true hardness, or
indentation size-independent hardness, defined as the
energy needed for the permanent deformation of an unit
volume. Obviously, one can get an equation of the same

form as Equation 4 by dividing both sides of Equation 8
by d.

The analysis above is similar to those reported orig-
inally by Bernhardt [17] and used afterwards by other
authors [2, 5, 19, 20]. Although self-consistent conclu-
sions have been obtained in these earlier studies by
analyzing experimental results according to Equation 8
or Equation 4 [2, 5, 18, 20], it should be pointed out
that Equation 8 cannot, in fact, be used directly to
describe the experimental data, for the experimental
errors, which may result from the elastic recovery of
indentation [6], the optical resolution of the objec-
tive lens used [7], and/or the sensitivity of the load
cell [8], etc., are neglected in deducing this equation.
Using Equation 8 to study the ISE for fused silica,
Hirao and Tomozawa [2] have shown that attributing
theα term to the surface energy may yield unaccept-
ably large surface-energy values, exceeding 0.1 J/cm2.
One possible explanation is, as suggested by Hirao and
Tomozawa themselves, that the origin of the variation
in surface area, including external surface area and in-
ner surface area, is so complicated during indentation
that the relationship between the surface energy and
the measuredα-value cannot be determined more ac-
curately. As can be seen later, however, errors due to
estimatingα-value directly from the originally mea-
sured data with Equation 8, without considering the
experimental errors, may be another important cause
for the resulting large values of surface energy.

Now let us incorporate the experimental errors,
which are usually inevitable in the conventional hard-
ness testing, into Equation 8. Firstly, we denote the true
values of the applied load and the resulting indentation
size asP0 andd0, respectively. Clearly, it is these two
quantities that can be correlated by Equation 8, i.e.,

P0 = αd0+ βHTd2
0 (8a)

In general, the experimental errors in hardness test-
ing can be divided into two sets: one related to the
measurement of indentation size and the other to the
measurement of applied load. Several methods have
been proposed for correcting these experimental errors
[23–25]. The simplest and commonly used method is to
modify the measured results by a constant “error”, i.e.,
the true values of the applied load,P0, and the resulting
indentation size,d0, can be obtained with [25]:{

P0 = P + η
d0 = d + δ (9)

whereP andd are now the measured data, andη andδ
are constants dependent on test material, test machine,
and test conditions.

Substituting Equation 9 into Equation 8a yields

P = (βHTδ
2+ αδ − η)+ (2βHTδ + α)d

+βHTd2 (10)

Equation 10 is of the same form as the empirical
equation established previously by the present author
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[21, 22], Equation 6. Thus the physical meanings of
the parameters in Equation 6 can be understood by the
following equations:

c0 = βHTδ
2+ αδ − η (11a)

c1 = 2βHTδ + α (11b)

c2 = βHT (11c)

i.e., all of the parameters in Equation 6,c0,c1, andc2, are
functions of the true hardness, surface energy, and the
experimental errors. Note that thec2-value is dependent
only on the true hardness of test material. Equation 11c
can be used as the basic equation for estimating the
true hardness,HT, the energy needed for producing the
permanent deformation of an unit volume.

Up to now, a reasonable explanation can be offered
for size effect in low-load hardness testing. Substituting
Equation 10 into Equation 1 yields:

H = κ
(

c0+ c1d + c2d2

d2

)
= κ

(
c0

d2
+ c1

d

)
+ HT

(12)
or

1H = H − HT = κ
(

c0

d2
+ c1

d

)
(12a)

Equation 12a reveals that a difference,1H , exists be-
tween the apparent hardness defined as Equation 1,
H , and the true hardness,HT. Because1H in Equa-
tion 12a decreases with increasingd in most cases, the
ISE, i.e., a decreasing tendency in apparent hardness
with increasing indentation size, is observed more fre-
quently. On the other hand, it is clear that an increasing
tendency in1H with increasingd may also be ex-
pected from Equation 12a. So an opposite or reverse
form of the indentation size effect, namely RISE, in
which the apparent hardness increases with increasing
indentation size, may also be predicted. In fact, such
a phenomenon has been observed, although rarely, in
the previous studies by Banerjee and Feltham [26, 27].
The fact that a constant value is always obtained for the
apparent hardness when measurement is conducted at
a relatively higher level of applied load can also be ex-
plained with Equation 12a. The absolute value of1H
decreases with increasing identation size, hence with
the applied load. When the applied load increases to a
limited level, namelyPc, the value of1H would be-
come so small that it can be neglected compared with
the value of true hardness,HT. Thus the apparent hard-
ness can keep nearly constant.

3. Experimental verifications
The conclusions obtained in the theoretical considera-
tion mentioned above are now examined using the ex-
perimental data published previously by Sakaiet al.
[28]. For convenience, the values of the apparent hard-
ness and the true hardness will be presented with a
dimension of GPa in the following analysis, although
it has been demonstrated in the preceding section that
the hardness is a parameter with the dimension of J/m3.

A stoichiometric translucent mullite (3Al2O3 ·
2SiO2) was used in [28]. Specimens were divided into
three sets and then tested as-received (denoted as M-
AR), after annealed at 1750◦C for 5 h (M-75), or after
annealed at 1800◦C for 5 h (M-80), respectively. Both
Vickers hardness and Knoop hardness were measured
for all of the three sets of specimens. The original in-
dentation data were listed in Table III and IV of [28]
and now are reproduced in Figs 1–3 where the abscissa
is the indentation size,d, the average length of the two
diagonals for Vickers indentation or the length of the
major diagonal for Knoop indentation, and the coordi-
nate is the applied load,P. The solid lines in these plots
are obtained by a conventional polynomial regression
according to Equation 6. In each case, the regression
analysis returns a correlation coefficient of 0.999 or
better. Clearly, Equation 6 is proven sufficiently suit-

Figure 1 Plot of applied load as a function of indentation size for sample
M-AR.

Figure 2 Plot of applied load as a function of indentation size for sample
M-75.

Figure 3 Plot of applied load as a function of indentation size for sample
M-80.
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TABLE I Best-fit values of parameters in Equation 6

Vickers indentation Knoop indentation

Sample c0 (J/m) c1 (×103 J/m2) c2 (×106 J/m3) HTV (GPa) c0 (J/m) c1 (×103 J/m2) c2 (×106 J/m3) HTK (GPa)

M-AR −0.210 30.97 5792.70 10.7 0.057 9.33 644.99 9.2
M-75 −0.407 56.30 4763.43 8.8 0.013 8.43 622.19 8.9
M-80 −0.395 53.77 4527.83 8.4 0.022 7.41 608.80 8.7

Figure 4 Indentation size-dependence of the apparent hardness for sam-
ple M-75.

able for the representation of the experimental data.
The best-fit values of the parameters included in Equa-
tion 6 for the three sets of specimens are recorded in
Table I.

According to the theoretical consideration, the true
hardness of test material,HT, can be calculated con-
veniently from the best-fit value of parameterc2 in
Equation 6 with Equation 11c. The calculated values
of the true Vickers hardness,HTV, and the true Knoop
hardness,HTK, are also given in Table I. It is clearly
evident that, for each sample, the values of true hard-
nesses obtained from two indentor geometries,HTV
and HTK, are in good agreement with each other, giv-
ing a convincing support for the present theoretical
consideration.

Using the best-fit values of parametersc0 andc1 listed
in Table I, the differences between the values of the
apparent hardness and the true hardness,1HV = HV −
HTV and1HK = HK − HTK, are calculated as functions
of indentation size for sample M-75 according to Equa-
tion 12a and then illustrated in Fig. 4. Also shown in
Fig. 4 are the measured results of those two quanti-
ties. Fig. 4 indicates that the apparent Vickers hardness
is predicted to increase sharply at first and then de-
crease slowly with increasing indentation size, while
the apparent Knoop hardness decreases continuously
in the range of indentation size considered. A constant
value of the apparent hardness can be expected when

TABLE I I Best-fit values of parameters in Equation 4

Vickers indentation Knoop indentation

Sample a1 (N/mm) a2 (N/mm2) HV0 (GPa) a1 (N/mm) a2 (N/mm2) HK0 (GPa)

M-AR 7.47 6323.63 11.7 12.18 616.94 8.8
M-75 11.62 5743.36 10.7 9.48 616.03 8.8
M-80 10.98 5448.67 10.1 8.58 697.38 8.5

the indentation size,d, is larger than about 0.5 mm for
both Vickers and Knoop hardness testings.

A further comment should be made on the experi-
mental results presented in Fig. 4. As shown in Fig. 4,
the apparent Vickers hardness is nearly constant in the
indentation size range of 8–40µm. It should be pointed
out, however, that such a phenomenon is simply an ar-
tifact and cannot be considered the same as observed
usually in a relatively higher level of applied load, for
the variation of1HV with d in this range of indentation
size is too small to be detected accurately. As predicted
with Equation 12a, the solid line in Fig. 4, the indenta-
tion size-dependence of the apparent Vickers hardness
will be observed easily if a wider range of the applied
load is used.

For purposes of comparison, the original indentation
data shown in Figs 1–3 are analyzed according to Equa-
tion 4. Equation 4 in the alternative form is:

P

d
= a1+ a2d (13)

It can be expected from Equation 13 that a plot of
P/d vs. d should yield a straight line. Table II sum-
marizes all of thea1 anda2 values obtained by linear
regression according to Equation 13, as well as the val-
ues of load-independent hardness,H0, which is calcu-
lated with Equation 5, for M-AR, M-75, and M-80. It
is shown that, the load-independent hardness obtained
with Vickers indentation,HV0, is significantly higher
than that obtained with Knoop indentation,HK0, indi-
cating that Equation 4 does not give an accurate expla-
nation for the ISE.

In fact, theP/d-d relationships for series of Si3N4-
based ceramics have been found to be significantly
non-linear, although a correlation coefficient of 0.99
or better is usually returned for these analyses [21, 22].
Similar conclusion can also be obtained by analyzing
the original indentation data for millite. Fig. 5a rep-
resents the Vickers indentation data of sample M-75
on a P/d-d plot. The solid line in this plot represents
“best-fit” of Equation 13 to the measured data. It can
be seen clearly that all the data fall into two separate
parts, both showing good linearity. The fact that a good
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Figure 5 Plots ofP/d as a function ofd for sample M-75 (a) Vickers indentation; (b) Knoop indentation.

linear relationship betweenP/d andd is observed with
the Knoop indentation data of sample M-75, Fig. 5b,
may be an artifact due to the extremely small value of
c0, 0.01 J/m.

The final comment concerns experimental results
reported by Hirao and Tomozawa [2], which has been
mentioned in the preceding section. Similarly, it is rea-
sonable to assume that the original Knoop indentation
data for fused silica can be described with Equation 6
in which the value of parameterc0 is determined to be
zero, for an excellent linearity betweenP/d andd has
been obtained with those data [2]. Note that the value of
parameterc1 in Equation 6 is dependent on both exper-
imental error,δ, and surface energy,α, as predicted in
Equation 11b. It can be concluded easily that neglect-
ing the experimental errors is an important cause for
the resulting large values of surface energy.

4. Concluding remarks
The essence of the analysis presented in this study is
that hardness is a parameter which is defined essentially
based on the energy-balance consideration. The origin
of the indentation size effect on the apparent hardness
lies in the fact that the traditional definition for hard-
ness, the ratio of the applied load to the resulting in-
dentation area, is an uncompleted description for the
energy-balance relationship during indentation. Based
on a detailed theoretical analysis, the following energy-
balance equation is proposed to correlate the hardness
test load,P, and the resulting indentation size,d:

P = c0+ c1d + c2d2

where the constantsc0, c1, andc2 are functions of true
hardness, surface energy, and the possible experimental
errors. Especially, thec2-value is dependent only on the
true hardness of test material.

The validity of this new equation is then examined
using the previously published experimental data. It is
shown that this equation gives excellent fits to the exper-
imental results. In addition, the true hardness estimated
with this equation is found to be independent of inden-
tor geometry as well as indentation size.
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